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Result of Calibration

It is reasonable to suppose, on the basis of the above

estimates, that the calibration of the rotary attenuator

by this method should be accurate to f 0.02 db over a

20-db range, the accuracy being greatest over the first

part of the range.

The results obtained are shown in Fig. 5, where the

error or deviation in db is plotted for various settings

of the rotary attenuator, which is in itself an absolute

instrument. For comparison, the same attenuator was

calibrated against an IF piston attenuator, the results

being shown in the same illustration. The deviations

are, in both cases, of the order expected.

CONCLUSION

The method described above for the absolute calibra-

tion of microwave attenuators has been tested experi-

mentally at a wavelength of 3.2 cm. Estimates were

made of the padding required to attain an accuracy of

the order of + 0.02 db over a 20-db range. It was shown

that the results obtained are accurate to within the de-

sign limits of the apparatus, and to within the accuracy

of other methods in current use. By further reducing the

effects of multiple reflections in the microwave circuit

it should be possible to attain even greater accuracy, if
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5—Deviations of attenuation from rotary attenuator reading
using the bridge method and IF comparison method of calibra-
tion. The rotary attenuator is an absolute instrument.

required. The method is insensitive to power fluctua-

tions and used comparatively simple and readily avail-

able microwave and electronic apparatus.
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Pulse Waveform Degradation Due to Dispersion

in Waveguide *
ROBERT S. ELLIOTTf’

Summaq.j-Phase velocity in a waveguide is a nonlinear function

of frequency and thus causes dispersion of the spectral components
in a puke waveform. For most practical cases, it is a good assumption
to consider the phase constant to be a quadratic function of fre-

quency. An expression can then be derived for the exit waveform
shape as a function of guide length, dispersion, and width of the
input rectangular pulse. The derived expression is given in terms of
tabulated error functions and Fresnel integrals. It is universal in form

and applicable to a wide range of practical problems, A family of de-
graded wave shapes has been computed from this expression and is
presented graphically. The results apply for any mode in a straight
waveguide of arbitrmy but constant cross section.

INTRODuCT1ON

A

S THE usable range of microwave frequencies

has been pushed higher and higher, a run of

waveguide whose physical length is L has as-

sumed an electrical length great enough to affect trans-
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mission of pulsed energy, even when loss is ignored. The

reason for this lies in the frequency behavior of the phase

constant. If ~(co) is the phase constant, then

dw’ – UC’
B(.) = ; = ———-

(1)

9 v

in which hg is the guide wavelength at the angular fre-

quency co, and v = (IM)–112, with p and e the permeability

and permittivity, respectively, of the medium filling the

guide. Eq. (1) applies for any mode in a straight section

of waveguide of any” constant cross section. WCis the cut-

off angular frequency of the particular mode being con-

sidered.

Eq. (1) can be expanded in a Taylor’s series about the

angular frequency f.IJO,giving

1 (300JC2.
+— 2-&jkd3_””. (2)
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Fig. l—Rectangular pulse waveforms.

It is apparent from (1) and (2) that ~(co) is not a linear

function of a. Thus, the Fourier components of a pulse

traveling down the waveguide are dispersed, and the

exit waveform is degraded. The amount of degradation

depends on the Fourier composition of the pulse, the

length L of the run of waveguide, and the rapidity of

convergence of the series (2). This convergence depends

on aO, UC, and the bandwidth m —u1 sti~tio+wI needed

to adequately represent the pulse.

This problem of pulse degradation has received both

theoretical and experimental attention in the literature,

An interesting display of the effect of delay distortion

on a rectangular pulse has been provided by the experi-

mental equipment of Beck.1’2 A series of analytical

paperss–b has considered the effect of dispersion on a

Heaviside unit step function and on a Dirac function,

in 10SSV as well as lossless waveguides. However, in all

cases, the analysis was based on the exact relation (1).

A precise expression for the exit waveform can be de-

rived in this manner, but, unfortunately, the expression

is unwieldy and not given in terms of tabulated func-

tions. Thus, calculated waveshapes which can be com-

pared to Beck’s observations have not been readily

available.

For most cases of practical interest, an approximation

of (1) can be made which yields useful results in a

1A. C. Beck, “Microwave testing with millimicrosecond pulse s,”
IRE TRANS., vol. MTT-2, pp. 93–100; Apr;l, 19S4.

2 A. C. Beck, “Measurement techniques for multimode wave-
guides, ” IRE TRANS., vol. MTT-3, pp. 35-42; April, 1955.

3 M. Cotte, “Propagation d’um perturbation clans une guide
electrique, ” Ann. Tt%comrnun., vol. 1, pp. 49-52; March-April, 1946.

A M. Namiki and K. Horiuchi, “On the transient phenomena in
the waveguide,” J. Phys. Sot. Japan, vol. 7, pp. 190–193; March-
April, 1952.

5 P. Poincelot, “Propagation of a signal along a waveguide, ”
Ann. Tf!licommun., vol. 9, pp. 315–317; November, 1954.

G M. Cotte, “Propagation of a pulse in a wave guide,” Ondi Elec.,
vol. 34, pp. 143–146; February, 19.54.

greatly simplified form. This approximai;ion consists of

taking only the first three terms of the expansion (2),

thus treating ~(u) as a quadratic function of co, An

analysis can be based on this approximation, culminat-

ing in an expression for the exit wavefc)rm containing

only error functions and Fresnel integrals, for both of

which adequate tables are available. Sample computa-

tic,ns yield a family of graphs of exit waveforms of vari-

ous degrees of degradation.

Analysis

Let a microwave carrier signal at the angular fre-

quency coo be modulated by a train of rectangular pulses

of width T and separation r. [See Fig. 1(a). ] In most

practical applications r/T is so large that the Fourier

series spectrum differs negligibly from the Fourier in-

tegral spectrum found by considering only one pulse in

the train.

‘Thus, if

e(t) = E(t) Cos ad (3)

is the waveform being injected into a run of waveguide,

with E(t) given by Fig. 1(a), it is assumed that a satis-

factory model results from saying that (3) is the wave-

form being injected into the run of waveguide, with

E(t) given instead by Fig. 1 (b). Then

E(t) = J ‘g(co)e~o’dw (4)
—cc

and

UT
sin ~

g(u) = : ~T” . (5)

2
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(11)

Substitution and symmetry considerations yield

F(t) = : %/{ FI(t)}’ + {l?,(t)}’

sin ——
cc 2

e(t) = ~
s

COS (cd + kkjt do
27r –m UT

(6)
with

COT
sin —

s

cc 2
Fl(t) = Cos [d + BL&’2]d&’ (12)

—cc WT

—
‘-J

as the Fourier equivalent of the input waveform (3).

Referring to the discussion about phase constant in

the preceding section, it is assumed that

2

UT
sin —

s

. 2
F,(t) = sin [wt + BLwz]da. (13)

—cc COT

2

/3(0)’) = /30 + A [w’ – Wo] – B[fJ – w,]’ (7)

in which

If the trigonometric functions occurring in the inte-

grands of (12) and (13) are replaced by their equivalent

exponential forms, the Fourier transforms of (12) and

(13) can be deduced with the repeated use of formula

731.1 of Campbell and Foster. 8 One concludes that
(8)

F(t)=~~{erf[~]-er f[~]}2+{c[(~)’] ‘s[(~)2~;[(?)2]+s[(?)l}2(14)

(15)

(16)

(17)

(18)

(19)

In a waveguide run of length L, the Fourier corn- with

ponent at angular frequency w’ is shifted in phase an

amount /3L.
2t

#=—

Assuming that the attenuation is frequency insensi- T

tive,7 the output waveform is proportional to

WT
sin —

f(t) = : J_”
2

cos [(w + Wo)t — 130L
w COT

and

2

— ALu + BLW2]dOA (9)

dJ

%’;

C[z] = ~ COSu2du
7rll

dJ

+’

S[Z] = ~ sin u2du.
z-o

From (9) it follows that

~(t + AL) = : COS [W(I(t + AL) – ~oL]

WT
sin —

s

. 2
cos [cd + BLWZ]UL

—w UT

Erf [z ] is the error function and C [z], S [z ] are the Fres-

nel integrals. Adequate tables of the error function are

available for all values of z of interest in this analysis.

Tables of C[z], S[z] are available for O <z ~ 50. For

z >50, the asymptotic expressions, due to Catchy, g may

be used. The first two terms are sufficient, giving

2

— ~ sin [wo(t + AL) – DOL]

WT
sin —

s

cc 2
sin [wt + BLw2]du.

—. UT

c’,., -S,z,+{[:+-!]cosz

(lo) +[hasinz}’20)
2

8 G. A. Campbell and R. M. Foster, “Fourier Integrals for Prac-

The output modulation envelope is therefore given by ~948.tical Applications, ” D. Van Nostrand Co., Inc., New York, N. Y.;

‘ A. L. Cauchy, “Asymptotic expansions for Fresnel integrals, ”
7 This is obviously not true in the entire range — cc <o’< m. C.R. A cad. Sci., Paris, vol. 15, pp. 554, 573; 1842. See also, G. N.

However in the restricted range coo–fl<a’~u.+~ needed to ade- WatsonJ “Bessel Functions, ” Cambridge University Press, Cam-
quately represent the pulse, it is a reasonable assumption. bridge, Eng., 2nd cd., p. 545; 1952.
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Fig. 2—Degraded waveforms.

Output waveforms have been computed from (14) for

the parameter values a =0, 0.032, 0.1, 0.32, 1.0. These

are shown in Fig. 2 and comprise a universal family of

degraded waveforms. For any particular application, one

need only compute B from (8) and a from (16). A rough

estimate of the output waveform can be obtained from

Fig. 2 by examining the curve for the appropriate value

of a. A more exact estimate can be obtained by inserting

the precise value of a in (14) and computing F(t) with

the aid of the tables of error function and Fresnel inte-

grals.

A study of Fig. 2 reveals that the degradation in-

creases with a. Thus, the narrower the pulse, the longer

the waveguide run, the closer one operates to cutoff, the

greater the pulse degradation. These are all reasonable

results and (14) establishes the degree to which these

factors have an influence.

.As an example, consider a K. band delay line consist-

ing of circular waveguide 0.500 inch in outside diameter

with a 0.032-inch wall, and carrying a TE,o1 mode. If the

carrier frequency is 34,200 mc and the pulse width is

0.1.25 psec, the round trip delay in a length of forty feet

is only 0.3 psec, and the exit waveform is approximately

Fi~g. 2(c). By increasing the length to four hundred feet,

the delay can be raised to 3 psec, but the pulse is further

degraded, being given approximately by Fig. 2(d).

CONCLUSION

By assuming that phase velocity in a waveguide is a

quadratic function of frequency, it is possible to derive

a compact formula for pulse degradation due to disper-

sicm. From the formula, a family of universal curves can

be computed, showing the effect of guide length, pulse

width, and dispersion on the pulse shape.


