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Result of Calibration

It is reasonable to suppose, on the basis of the above
estimates, that the calibration of the rotary attenuator
by this method should be accurate to +0.02 db over a
20-db range, the accuracy being greatest over the first
part of the range.

The results obtained are shown in Fig. 5, where the
error or deviation in db is plotted for various settings
of the rotary attenuator, which is in itself an absolute
instrument. For comparison, the same attenuator was
calibrated against an IF piston attenuator, the results
being shown in the same illustration. The deviations
are, in both cases, of the order expected.

CONCLUSION

The method described above for the absolute calibra-
tion of microwave attenuators has been tested experi-
mentally at a wavelength of 3.2 cm. Estimates were
made of the padding required to attain an accuracy of
the order of +0.02 db over a 20-db range. It was shown
that the results obtained are accurate to within the de-
sign limits of the apparatus, and to within the accuracy
of other methods in current use. By further reducing the
effects of multiple reflections in the microwave circuit
it should be possible to attain even greater accuracy, if
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Fig. 5—Deviations of attenuation from rotary attenuator reading
using the bridge method and IF comparison method of calibra-
tion. The rotary attenuator is an absolute instrument.

required. The method is insensitive to power fluctua-
tions and used comparatively simple and readily avail-
able microwave and electronic apparatus.
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Pulse Waveform Degradation Due to Dispersion
in Waveguide*

ROBERT S.

Summary—Phase velocity in a waveguide is a nonlinear function
of frequency and thus causes dispersion of the spectral components
in a pulse waveform. For most practical cases, it is a good assumption
to consider the phase constant to be a quadratic function of fre-
quency. An expression can then be derived for the exit waveform
shape as a function of guide length, dispersion, and width of the
input rectangular pulse. The derived expression is given in terms of
tabulated error functions and Fresnel integrals. It is universal in form
and applicable to a wide range of practical problems. A family of de-
graded wave shapes has been computed from this expression and is
presented graphically. The results apply for any mode in a straight
waveguide of arbitrary but constant cross section.

S
has been pushed higher and higher, a run of
waveguide whose physical length is L has as-

sumed an electrical length great enough to affect trans-
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mission of pulsed energy, even when loss is ignored. The
reason for this lies in the frequency behavior of the phase
constant. If 8(w) is the phase constant, then

27

) = 2T Y m et
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(1

in which A, is the guide wavelength at the angular fre-
quency w, and v = (ue)"1/2, with u and e the permeability
and permittivity, respectively, of the medium filling the
guide. Eq. (1) applies for any mode in a straight section
of waveguide of any constant cross section. w, is the cut-
off angular frequency of the particular mode being con-
sidered.

Eq. (1) can be expanded in a Taylor's series about the
angular frequency wo, giving

Wo 1 w?
B(w) = Bo - vz—ﬁo[w — ] — 2y e [ — wp)?
1 wowc2 3
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Fig. 1—Rectangular pulse waveforms,

It is apparent from (1) and (2) that 8{w) is not alinear
function of w. Thus, the Fourier components of a pulse
traveling down the waveguide are dispersed, and the
exit waveform is degraded. The amount of degradation
depends on the Fourier composition of the pulse, the
length L of the run of waveguide, and the rapidity of
convergence of the series (2). This convergence depends
on wo, w., and the bandwidth wo—w; <o L<we+w; needed
to adequately represent the pulse.

This problem of pulse degradation has received both
theoretical and experimental attention in the literature,
An interesting display of the effect of delay distortion
on a rectangular pulse has been provided by the experi-
mental equipment of Beck.'? A series of analytical
papers®™® has considered the effect of dispersion on a
Heaviside unit step function and on a Dirac function,
in lossv as well as lossless waveguides. However, in all
cases, the analysis was based on the exact relation (1).
A precise expression for the exit waveform can be de-
rived in this manner, but, unfortunately, the expression
is unwieldy and not given in terms of tabulated func-
tions. Thus, calculated waveshapes which can be com-
pared to Beck’s observations have not been readily
available.

For most cases of practical interest, an approximation
of (1) can be made which yields useful results in a
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greatly simplified form. This approximation consists of
taking only the first three terms of the expansion (2),
thus treating f(w) as a quadratic function of w. An
analysis can be based on this approximation, culminat-
ing in an expression for the exit waveform containing
only error functions and Fresnel integrals, for both of
which adequate tables are available. Sample computa-
tions yield a family of graphs of exit waveforms of vari-
ous degrees of degradation.

Analysis

Let a microwave carrier signal at the angular fre-
quency wo be modulated by a train of rectangular pulses
of width T and separation 7. [See Fig. 1(a).] In most
practical applications 7/7" is so large that the Fourier
series spectrum differs negligibly from the Fourier in-
tegral spectrum found by considering only one pulse in
the train.

Thus, if

e(t) = E(t) cos wot 3)

is the waveform being injected into a run of waveguide,
with E(?) given by Fig. 1(a), it is assumed that a satis-
factory model results from saying that (3) is the wave-
form being injected into the run of waveguide, with
E(t) given instead by Fig. 1(b). Then

£) = [ geperdo o)
and
. wT
SN ——
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Substitution and symmetry considerations yield

ol
sin ——

0 Tf‘” 2
ety =—| —0—
2w wT

—o0

cos (w + wo)t- dw (6)

2

as the Fourier equivalent of the input waveform (3).
Referring to the discussion about phase constant in
the preceding section, it is assumed that

B(o') = Bo + Al — wo] — Blo' — w]? (7)
in which
wo
2280

1 w?

B=— - 8
2 T (8)
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If the trigonometric functions occurring in the inte-
grands of (12) and (13) are replaced by their equivalent
exponential forms, the Fourier transforms of (12) and
(13) can be deduced with the repeated use of formula
731.1 of Campbell and Foster.® One concludes that

ro=/ [ e T A ) S [E Tl ) J[ G o

In a waveguide run of length L, the Fourier com-
ponent at angular frequency o’ is shifted in phase an
amount SL.

Assuming that the attenuation is frequency insensi-
tive,” the output waveform is proportional to

T

sin —
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— ALw + BLw®|dw. (9)
From (9) it follows that
' T
f(t+ AL) = 5 cos fwo(t + AL) — BoL]
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2

The output modulation envelope is therefore given by

" This is obviously not true in the entire range — o <w’< .
However in the restricted range w,—Q<w’ <wo+ needed to ade-
quately represent the pulse, it is a reasonable assumption.

with
v i)
T
SN2 (16)
T
and
2 2
erf [z] = —ﬁfo e du 17
Clz] = szv; cos udu (18)
T Jo
2 Yz
=4/ = in %l
S|z] 1/71_ fo sin u2du, (19)

Erf[z] is the error function and C[z], S[z] are the Fres-
nel integrals. Adequate tables of the error function are
available for all values of 2 of interest in this analysis.
Tables of Clz], S[z] are available for 0<2<50. For
2> 50, the asymptotic expressions, due to Cauchy,® may
be used. The first two terms are sufficient, giving

+ I:Elz- — (Zi)z:! sin z} . (20)

8 G. A. Campbell and R. M. Foster, “Fourier Integrals for Prac-
?QCZEl; Applications,” D. Van Nostrand Co., Inc., New York, N. Y.;

® A. L. Cauchy, “Asymptotic expansions for Fresnel integrals,”
C.R. Acad. Sci., Paris, vol. 15, pp. 554, 573; 1842, See also, G. N.
Watson, “Bessel Functions,” Cambridge University Press, Cam-
bridge, Eng., 2nd ed., p. 545; 1952.
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Fig. 2—Degraded waveforms.

Output waveforms have been computed from (14) for
the parameter values ¢ =0, 0.032, 0.1, 0.32, 1.0. These
are shown in Fig. 2 and comprise a universal family of
degraded waveforms. For any particular application, one
need only compute B from (8) and ¢ from (16). A rough
estimate of the output waveform can be obtained from
Fig. 2 by examining the curve for the appropriate value
of a. A more exact estimate can be obtained by inserting
the precise value of ¢ in (14) and computing F(f) with
the aid of the tables of error function and Fresnel inte-
grals.

A study of Fig. 2 reveals that the degradation in-
creases with a. Thus, the narrower the pulse, the longer
the waveguide run, the closer one operates to cutoff, the
greater the pulse degradation. These are all reasonable
results and (14) establishes the degree to which these
factors have an influence.

As an example, consider a K, band delay line consist-
ing of circular waveguide 0.500 inch in outside diameter
with a 0.032-inch wall, and carrying a TEq mode. If the
carrier {requency is 34,200 mc and the pulse width is
0.125 usec, the round trip delay in a length of forty feet
is only 0.3 usec, and the exit waveform is approximately
Fig. 2(c). By increasing the length to four hundred feet,
the delay can be raised to 3 usec, but the pulse is further
degraded, being given approximately by Fig. 2(d).

CONCLUSION

By assuming that phase velocity in a waveguide is a
quadratic function of frequency, it is possible to derive
a compact formula for pulse degradation due to disper-
sion. From the formula, a family of universal curves can
be computed, showing the effect of guide length, pulse
width, and dispersion on the pulse shape.



